Extensions 1→N→G→Q→1 with N=C33 and Q=C12

Direct product G=N×Q with N=C33 and Q=C12
dρLabelID
C33×C12324C3^3xC12324,159

Semidirect products G=N:Q with N=C33 and Q=C12
extensionφ:Q→Aut NdρLabelID
C331C12 = C33⋊C12φ: C12/C2C6 ⊆ Aut C33366-C3^3:1C12324,14
C332C12 = C3×C32⋊C12φ: C12/C2C6 ⊆ Aut C33366C3^3:2C12324,92
C333C12 = Dic3×He3φ: C12/C2C6 ⊆ Aut C33366C3^3:3C12324,93
C334C12 = C334C12φ: C12/C2C6 ⊆ Aut C33108C3^3:4C12324,98
C335C12 = C32×C32⋊C4φ: C12/C3C4 ⊆ Aut C3336C3^3:5C12324,161
C336C12 = C3×C33⋊C4φ: C12/C3C4 ⊆ Aut C33124C3^3:6C12324,162
C337C12 = C4×C3≀C3φ: C12/C4C3 ⊆ Aut C33363C3^3:7C12324,31
C338C12 = C12×He3φ: C12/C4C3 ⊆ Aut C33108C3^3:8C12324,106
C339C12 = Dic3×C33φ: C12/C6C2 ⊆ Aut C33108C3^3:9C12324,155
C3310C12 = C32×C3⋊Dic3φ: C12/C6C2 ⊆ Aut C3336C3^3:10C12324,156
C3311C12 = C3×C335C4φ: C12/C6C2 ⊆ Aut C33108C3^3:11C12324,157

Non-split extensions G=N.Q with N=C33 and Q=C12
extensionφ:Q→Aut NdρLabelID
C33.1C12 = C32⋊C36φ: C12/C2C6 ⊆ Aut C33366C3^3.1C12324,7
C33.2C12 = Dic3×3- 1+2φ: C12/C2C6 ⊆ Aut C33366C3^3.2C12324,95
C33.3C12 = C9×C32⋊C4φ: C12/C3C4 ⊆ Aut C33364C3^3.3C12324,109
C33.4C12 = C4×C32⋊C9φ: C12/C4C3 ⊆ Aut C33108C3^3.4C12324,27
C33.5C12 = C12×3- 1+2φ: C12/C4C3 ⊆ Aut C33108C3^3.5C12324,107
C33.6C12 = Dic3×C3×C9φ: C12/C6C2 ⊆ Aut C33108C3^3.6C12324,91
C33.7C12 = C9×C3⋊Dic3φ: C12/C6C2 ⊆ Aut C33108C3^3.7C12324,97

׿
×
𝔽